Применение антибиотиков в медицине

Укусы

Применение антибиотиков

В клиникеКлиника: 1) Лечебно-профилактическоеучреждение, в котором, кроместационарного лечения больных, проводится преподавательская и научно-исследовательская работа. 2) Течение заболевания в значении «клинические проявления». применяют около 40 антибиотиков (далее по тексту — «А.»), не оказывающих вредного действия на организмОрганизм (от средне-векового латинского organizo — устраиваю, сообщаю стройный вид) — живое существо, обладающее совокупностью свойств, отличающих его от неживой материи.

Большинство организмов имеет клеточное строение. Формирование целостного организма — процесс, состоящий из дифференцировки структур (клеток, тканей, органов) и функций и их интеграции как в онтогенезе, так и в филогенезе. человека. Для достижения лечебного действия необходимо поддержание в организме так называемых терапевтических концентраций, особенно в очаге инфекции. Повышение концентрации А. в организме более эффективно, но может осложниться побочными действиями препаратов.

https://www.youtube.com/watch?v=ytadvertiseru

При необходимости усилительное действие А. можно применять несколько А. (например, стрептомицин с пенициллиномПенициллины — антибиотики, образуемые пенициллами или получаемые полусинтетически. Открыты в 1929 году английским микробиологом Александером Флемингом. В широкую медицинскую практику вошли в 1943-44 годах, главным образом благодаря работам Х.

Флори и английского биохимика Эрнста Бориса Чейна в Великобритании и США и российского микрбиолога Зинаиды Виссарионовны Ермольевой. Пенициллины обладают широким спектром антимикробного действия; малотоксичны; могут вызывать аллергические реакции.), а также эфициллин (при воспаленииВоспаление — сложная приспособительная сосудисто-тканевая реакция организма на воздействие болезнетворных агентов.

Его могут вызвать биологические факторы — бактерии, вирусы, но чаще различные травмы. лёгких) и другие лекарственные средстваЛекарственные средства — (лекарства), вещества природного или синтетического происхождения или их смеси, используемые главным образом для лечения и профилактики болезней (напр.

Сочетания некоторых антибиотиков оказывают токсическое действие, и поэтому их комбинации применять нельзя. Пенициллинами пользуются при сепсисе, воспалении лёгких, гонорее, сифилисе и др. Бензилпенициллин, экмоновоциллин (новокаиновая соль пенициллина с экмолином) эффективны против стафилококковСтафилококки — род шаровидных бактерий.

Встречаются на коже животных и человека, в воздухе. Вызывают стафилококковую инфекцию.; бициллины-1, -3 и -5 (дибензилэтилендиаминовая соль пенициллина) используют для профилактики ревматических атак. Ряд А. — стрептомицина сульфат, паскомицин, дигидрострептомицинпаскат, пантомицин, дигидрострептомицинпантотенат, стрептомицин-салюзид, а также циклосерин, виомицин (флоримицин), канамицин и рифамицин — назначают при лечении туберкулёза.

Современные антибиотики

Препараты синтомицинового ряда используют при лечении туляремии и чумы; тетрациклины — для лечения холеры. Для борьбы с носительством патогенныхПатогенность, патогенный (болезнетворность, болезнетворный) (от греческого pathos — страдание, болезнь и …ген)— способность микроорганизмов вызывать инфекционные заболевания.

Зависит от вирулентности микроба и восприимчивости организма. стафилококков применяют лизоцимЛизоцим — фермент, взаимодействующий с сахарами определенных типов в клеточной стенке бактерий и разрушающий оболочки бактериальных клеток. с экмолином. Полусинтетические пенициллины с широким спектром действия — ампициллин и гетациллин — задерживают рост кишечной, брюшнотифозной и дизентерийной палочек.

Длительное и широкое применение А. вызывало появление большого количества устойчивых к ним патогенных микроорганизмовМикроорганизмы (микробы) — мельчайшие, преимущественно одноклеточные организмы, видимые только в микроскоп: бактерии, микроскопические грибы, простейшие, иногда к ним относят вирусы. Характеризуются огромным разнообразием видов, способных существовать в различных условиях (холода, жары, воды, засухи).

бактерии, микроскопические грибы и водоросли, простейшие. Иногда к микроорганизмам относят вирусы. одновременно к нескольким антибиотикам — перекрёстная лекарственная устойчивость. Для предупреждения образования устойчивых к А. форм периодически заменяют широко применяющиеся А. и никогда не применяют их местно на раневые поверхности.

Заболевания, вызванные устойчивыми к А. стафилококками, лечат полусинтетическими пенициллинами (метициллин, оксациллин, клоксациллин и диклоксациллин), а также эритромицином, олеандомицином, новобиоцином, линкомицином, лейкоцином, канамицином, рифамицином; против стафилококков, устойчивых ко многим А.

При нерациональном использовании антибиотиков активизируются патогенные грибыГрибы, грибки — группа растений, вызывающие те или иные заболевания, а также используемые для производства антибиотиков. Наиболее важное значение в патологии человека и практическое промышленное применение имеют три большие группы грибков — плесневые, дрожжевые (и дрожжеподобные) и дерматомицеты, или дерматофиты (паразиты кожи, волос и ногтей).

, находящиеся в организме, что приводит к кандидозуКандидоз — заболевание, вызывается дрожжеподобными грибами рода Candida; то же, что кандидамикоз. Для профилактики и лечения кандидозов употребляют А. нистатинНистатин — лекарственный противогрибковый препарат из группы антибиотиков. Применяют в таблетках для лечения и профилактики кандидамикоза, выпускают также нистатиновую мазь для наружного применения. и леворин.

https://www.youtube.com/watch?v=https:tv.youtube.com

В некоторых случаях при лечении антибиотиками развиваются побочные явления. Пенициллин при длительном применении в больших дозах оказывает токсическое действие на центральную нервную систему, стрептомицин — на слуховой нервНервы — тяжи нервной ткани, образованные главным образом нервными волокнами.Нервы связывают мозг и нервные узлы с другими органами и тканями тела.

Совокупность нервов формирует периферическую нервную систему. У человека от головного мозга отходит 12 пар нервов, от спинного мозга — 31 пара. Особую группу составляют нервы, берущие начало от узлов, стволов и сплетений вегетативной нервной системы., и т. п. Эти явления ликвидируют уменьшением доз.

СенсибилизацияСенсибилизация — повышение чувствительности организма или отдельных органов (например, органов чувств) к воздействию каких-либо раздражителей (главным образом химических). Сенсибилизация лежит в основе ряда заболеваний, в частности, аллергических. (повышенная чувствительностьЧувствительность — способность организма воспринимать раздражения, поступающие из окружающей или внутренней среды, и отвечать на них дифференцированными формами реакций.

) организма может проявляться независимо от дозы и способа введения А. и выражаться в обострении инфекционного процесса (поступление в кровь больших количеств токсиновТоксины (от греч. «яд») — сложные соединения белковой природы бактериального, растительного или животного происхождения, способные при попадании в организм вызывать его заболевание или гибель.

Получение новых солей А. позволило преодолеть специфическую токсичностьТоксичность — способность некоторых химических соединений и веществ биологической природы оказывать вредное действие на организм человека. некоторых А. Например, пантотеновая соль стрептомицина — пантомицин, не отличаясь от стрептомицина терапевтическим действием, хорошо влияет на больных, не переносящих стрептомицина.

При лечении антбиотиками необходимо одновременно вводить витаминыВитамины — органические вещества, образующиеся в организме с помощью микрофлоры кишечника или поступающие с пищей, Обычно растительной. Необходимы для нормального обмена веществ и жизнедеятеэгеяосяги. Длительное употребление пищи, лишеных витаминов, вызывает заболевания (авитаминоз, гиповитаминоз).

Основные витамины: А (ретинол), Д (кальциферолы), Е (токоферолы), К (филлохинон); Н (биотин), РР (никотиновая кислота), С (аскорбиновая кислота), B1 (тиамин), В2 (рибофлавин), В3 (пантотеновая кислота), В6 (пиридоксин), B12 (цианкобаламин), Вс (фолиевая кислота). АД, Е и К являются жирорастворимыми, остальные — водорастворимыми.

Антибиотические вещества находят применение в различных отраслях народного хозяйства, в научных исследованиях. Они широко используются в медицине, в сельском хозяйстве, в пищевой и консервной промышленности, как специфические ингибиторы в биологических исследованиях.

Истоия

Термин «антибиотики» предложен Ваксманом (S. A. Waksman) в 1942 году.

Первые попытки использовать антибиотики в лечебных целях были сделаны H. Н. Благовещенским в 1890 году. Он показал, что синегнойная палочка подавляет развитие сибирской язвы у животных; при этом лечебное действие синегнойной палочки обусловливается определенным продуктом жизнедеятельности этого микроба, то есть веществом, которое теперь называют антибиотиком.

Первые попытки выделения антибиотиков были сделаны Эммерихом (R. Emmerich, 1889), изолировавшим из культур синегнойной палочки вещество, которое он назвал пиоцианазой, обладавшее бактерицидными свойствами в отношении возбудителей сибирской язвы, брюшного тифа, дифтерии, чумы и стафилококков. Пиоцианаза использовалась некоторое время для местного лечения ран.

https://www.youtube.com/watch?v=ytdevru

Полученный препарат не был стандартным, и результаты его применения были очень непостоянными. Почти одновременно Η. Ф. Гамалея получил из культуры синегнойной палочки другой малотоксичный препарат, названный пиокластином, активный в отношении ряда микробов. В 1896 году Гозио (В. Gosio) выделил из плесени (Penicillium) первый кристаллический антибиотик — микофеновую кислоту — и показал, что это соединение задерживало развитие бактерий сибирской язвы.

Вехой в исследованиях антибиотиков являются работы Дюбо (R. J. Dubos, 1939), получившего из почвенной бактерии Bacillus brevis кристаллическое вещество тиротрицин, состоящее из двух антибиотиков-полипептидов — грамицидина и тироцидина.

Грамицидин был более активен в отношении грамположительных, а тироцидин — в отношении грамотрицательных бактерий. Тиротрицин обладает сильным бактерицидным действием в пробирке в отношении многих патогенных микробов, оказывая лечебное действие в опытах на мышах, зараженных пневмококком. Это первый антибиотик, действительно внедренный в медицинскую практику;

Переворот в учении об антибиотиках произошел в результате открытия Флемингом (A. Fleming) пенициллина. Еще в 1929 году Флеминг наблюдал, что вокруг колоний Penicillium notatum колонии стафилококка в чашке Петрилизируются, а фильтраты бульонных культур этого гриба обладают антибактериальным действием в отношении грамположительных и некоторых грамотрицательных микробов (гонококки, менингококки).

Выделить чистый пенициллин из культуры Penicillium notatum Флемингу не удалось ввиду малой стабильности этого антибиотика. В 1940 году Флори и Чейн (H. W. Florey, Е. В. Chain) разработали метод извлечения пенициллина из культуральной жидкости Penicillium notatum, и вскоре была выявлена высокая терапевтическая активность этого препарата.

Ценные свойства пенициллина послужили толчком к развитию промышленности антибиотиков. В СССР первый пенициллин был получен 3. В. Ермольевой в 1942 году. После открытия пенициллина начались интенсивные поиски новых антибиотиков, которые продолжаются и до сих пор.

Большинство ученых подразумевает под антибиотиками не только антибактериальные вещества, образуемые микроорганизмами, но и соединения, обладающие антибактериальной активностью, выделенные из животных тканей и высших растений (см. Фитонцидные препараты). Описано более 2000 антибиотиков и получено множество производных природных соединений, однако антибиотиков, пригодных для медицинского применения, существует лишь несколько десятков. Остальные антибиотики оказались слишком токсичными, малоактивными или лишенными химиотерапевтических свойств.

Классификация антибиотиков

Существуют три основных принципа, на основе которых можно классифицировать антибиотики: 1) по спектру действия, то есть по характеру биологического, объекта, в отношении которого данный антибиотик активен; 2) по химической структуре антибиотика; 3) по молекулярному механизму действия антибиотика на клетку.

Антибиотик принято разделять на антибактериальные, противогрибковые и противоопухолевые. Для медицинской практики такое подразделение является удобным, так как указывает на возможную сферу применения данного препарата. В действительности такое подразделение имеет много существенных недостатков потому, что даже близкие между собой антибиотики могут сильно отличаться друг от друга по антибактериальному спектру действия.

Антибактериальные антибиотики угнетают развитие бактерий. Некоторые из них, напр, бензил пенициллин, Макролиды, ристомицин (ристоцетин, спонтин), новобиоцин и другие, активны в основном лишь в отношении грамположительных микробов, другие, как, например, полимиксин, подавляют развитие главным образом грамотрицательных бактерий, третьи, например, тетрациклины, левомицетин (хлорамфеникол, хлоромицетин), аминоглюкозиды (стрептомицин, мономицин, канамицин, неомицин и гентамицин), так называемые антибиотики широкого спектра действия, задерживают рост как многих грамположительных, так и грамотрицательных бактерий.

Противогрибковые антибиотики оказывают специфическое угнетающее действие на рост грибков. Широкое применение в медицинской практике нашли антибиотики нистатин и леворин, используемые для лечения кандидоза и других заболеваний, вызываемых дрожжеподобными грибами. Антибиотик амфотерицин Б применяется для лечения генерализованных и глубоких микозов.

Противоопухолевые антибиотики. Установлено, что некоторые антибиотики угнетают развитие не только бактерий и грибков, но способны также задерживать размножение клеток злокачественных опухолей. Некоторые из этих препаратов нашли применение в медицинской практике.

Противоопухолевые антибиотики включают в себя шесть групп хим. соединений, представители которых используются в клинике.

Первую группу составляют актиномицины, открытые еще в 1940 году. Из-за высокой токсичности они в течение длительного времени не привлекали к себе внимания. Лишь в 1952 году, в опытах на животных с перевиваемыми опухолями, было установлено, что актиномицины подавляют развитие многих перевиваемых опухолей. В клинике актиномицины применяются в основном для лечения аденокарциномы почки пли опухоли Вильмса у детей.

Вторая группа противоопухолевых антибиотиков — это антибиотики антрациклины. Важнейший представитель этой группы — рубомицин — является одним из основных лекарственных средств для лечения хорионэпителиомы матки и острых лейкозов. Рубомицин при этих тяжелых заболеваниях нередко приводит к клиническому выздоровлению.

Третья группа противоопухолевых антибиотиков состоит из производных ауреоловой кислоты. Относящийся к этой группе антибиотик оливомицин применяется в основном для лечения опухолей яичка, включая семиномы, тератобластомы и эмбриональные раки в стадии генерализации с метастазами в легкие, органы брюшной полости и лимфатические узлы. Другим важным показанием для применения оливомицина являются тонзиллярные, быстро метастазирующие опухоли носоглотки.

Четвертая группа противоопухолевых антибиотиков представлена в Советском Союзе антибиотиком брунеомицином. Основным показанием к применению брунеомицина в клинике является лимфогранулематоз.

Японские исследователи внедрили в медицинскую практику два противоопухолевых антибиотика. Первый из них полипептидный антибиотик блеомицин применяется для лечения эпителиальных опухолей. Второй антибиотик митомицин С является представителем новой специальной группы антибиотиков порфир и нов.

До сих пор среди продуктов жизнедеятельности микроорганизмов не было обнаружено соединений, препятствующих репликации вирусов в живой клетке. Американские антибиотики стотал он и эленин, задерживающие развитие некоторых вирусных инфекций у животных, оказались интерфероногенами (см. Интерферон).

Классификация антибиотиков по химической структуре является более рациональной. Она позволяет сопоставить структуру Антибиотики с механизмом антимикробного их действия, побочными эффектами и процессами выведения из организма. Антибиотики относятся к различным группам химических соединений. К группе антибантибиотик ациклического строения относятся антибиотики полнены, в том числе нистатин, амфотерицин Б, трихомицин, кандицидин и др.

https://www.youtube.com/watch?v=ytcreatorsru

К другой группе относятся антибиотики тетрациклиновой структуры — см. Тетрациклины. К антибиотикам ароматического строения принадлежит гигромицин, применяемый в ветеринарии в качестве противогельминтного средства. К группе кислородсодержащих гетероциклических антибиотиков принадлежит противогрибковый антибиотик гризеофульвин, широко используемый в дерматологии, а также антибактериальный антибиотик новобиоцин, активный в отношении грамположительных кокков.

В отдельную группу выделены антибиотики Макролиды, имеющие в своей молекуле макроциклическое лактонное кольцо, связанное с одним или несколькими углеводными остатками (см. Макролиды). К этой группе относится ряд важных в медицинском отношении антибиотиков: эритромицин, олеандомицин и др. Близок к макролидам и антибактериальный антибиотик линкомицин.

К антибиотикам антрациклинам относится противоопухолевый антибиотик рубомицин. В группу аминогликозидных антибиотиков, построенных из остатков аминоциклитов и углеводов, входят стрептомицин и его производные (см. Стрептомицины), неомицин, канамицин, мономицин и гентамицин. В отдельную группу отнесены пенициллины, наиболее широко применяемые в медицинской практике (см. Пенициллины).

К антибиотикам полипептидам или белкам относятся грамицидины, тиротрицины, бацитрацин, полимиксины, лизоцимы, виомицин (флоримицин), колицины и др. К полипептидам, содержащим железо, относится антибиотик альбомицин. Довольно однородную группу составляют антибиотики актиномицины, обладающие противоопухолевой активностью (см.

Наиболее важные для медицинской практики антибиотики можно подразделить на несколько групп: 1) поражающие синтез бактериальной клеточной оболочки (Пенициллины, ристомицин, ванкомицин, новобиоцин, D-циклосерин и др.); 2) нарушающие синтез белков в бактериальной клетке (антибиотики тетрациклиновой структуры, Макролиды, левомицетин и др.);

3) подавляющие синтез белков в бактериальной клетке и одновременно нарушающие считывание генетического кода в процессе трансляции (аминогликозиды); 4) угнетающие синтез нуклеиновых кислот в клетках (Рифамицины, противоопухолевые антибиотики); 5) нарушающие целостность цитоплазматической мембраны в клетках грибков (противогрибковые антибиотики Полиены).

Антибиотикотерапия

Антибиотики являются основным средством этиотропной терапии заболеваний, вызванных различными бактериями. Их механизм действия основан на уничтожении бактериальной клетки или значительном снижении ее активности, способности к росту, развитию и размножению. Благодаря антибиотикам на сегодняшний день в медицине излечивается большинство бактериальных инфекций, которые еще 100 лет назад были неизлечимыми и приводили к частым летальным исходам.

На сегодняшний день, несмотря на высокую эффективность антибиотиков в отношении уничтожения различных возбудителей бактериальных инфекций и появления новых видов этих препаратов, все большее количество микроорганизмов приобретают устойчивость к ним. В связи с этим были разработаны основы рационального применения этой группы препаратов, которые позволяют свести к минимуму возможность появления устойчивых видов бактерий.

Кроме появления бактерий, устойчивых к антибиотикам, все чаще появляются данные, которые указывают на появление микроорганизмов, нормальный обмен веществ которых зависит от наличия антибиотика в питательной среде их развития. Это указывает на то, что в дальнейшем может быть все сложнее подбирать оптимальные антибиотики для лечения инфекционных заболеваний.

Антибиотики являются особыми лекарственными средствами, поэтому они должны отвечать ряду требований, которых нет для препаратов других фармакологических групп, к ним относятся:

  • Высокая активность в отношении одной или нескольких групп бактерий – антибиотики при накоплении в области локализации инфекционного процесса должны быстро и полностью уничтожать бактериальные клетки. На современном фармацевтическом рынке присутствуют антибиотики с широким спектром действия, которые являются эффективными в отношении большинства видов бактерий.
  • Отсутствие токсичности для человека – препарат должен быть безвредным. Оптимальными в этом отношении являются антибиотики, которые не оказывают токсического воздействия на организм ребенка и плода в случае необходимости применения у беременной женщины (амоксициллин).
  • Широкий терапевтический спектр – концентрация препарата должна варьироваться в широких пределах, при этом даже при значительном увеличении не оказывать токсического влияния на организм человека.
  • Хорошее накопление в тканях, длительное нахождение антибиотика в них, для возможности достаточного оказания эффекта в отношении возбудителей инфекционной патологии – различные антибиотики обладают способностью к накоплению в различных тканях, поэтому они подбираются в зависимости от локализации инфекционного процесса в организме.

Большинство современных антибиотиков отвечают требованиям, которые к ним предъявляются.

Эра антибиотиков берет свое начало с момента открытия А. Флемингом пенициллина. Это вещество синтезируется некоторыми плесневыми грибками и является их естественным орудием против бактерий, которое сформировалось в ходе борьбы за существование. На сегодняшний день насчитывается больше 100 природных, полусинтетических и синтетических антибиотиков.

Существует несколько рекомендаций, выполнение которых позволит сделать антибиотикотерапию рациональной, к ним относятся:

  • Прием антибактериальных средств только по показаниям – основным показанием является бактериальная инфекция. В случае повышения температуры тела не стоит сразу же принимать эту группу лекартсвенных средств, так как кроме бактерий существуют и другие причины ее повышения – вирусная инфекция, грибок.
  • Перед началом приема антибиотиков желательно точно определить вид бактериального возбудителя и его чувствительность к основным препаратам – для этого проводится бактериологическое исследование, при котором в условиях лаборатории из материала выделяется культура возбудителя, проводится ее идентификация и определение чувствительности к основным группам препаратов.
  • Достаточная дозировка препарата – она подбирается в зависимости от вида бактериальной инфекции, ее локализации и тяжести течения. Также обязательно учитывается возраст и общее состояние больного.
  • Длительность курса антибиотикотерапии – важный фактор в отношении формирования устойчивости у бактерий. Так прекращение применения препарата при оставшихся бактериях приводит к тому, что они становятся устойчивыми при повторном применении этого антибиотика. Такой курс составляет от 5 до 10 дней (в среднем 7 дней).
  • Подбор препарата в зависимости от локализации инфекционного процесса – различные антибиотики имеют разную концентрацию в тканях, поэтому при выборе препарата обязательно учитывается этот фактор, так как недостаточное накопление антибиотика может привести к развитию резистентности у бактерий.
  • Эмпирическая терапия (лечение без бактериологического исследования, при котором антибиотик назначается на основании клинической симптоматики заболевания, дающей основание предполагать наличие соответствующего бактериального возбудителя) начинается с более слабых противобактериальных средств (препараты 1 ряда). В случае их неэффективности есть возможность перейти на более мощные препараты (2 ряда). Эта рекомендация имеет название ступенчатая антибиотикотерапия.
  • В случае отсутствия клинико-лабораторного улучшения в течение 72 часов от начала антибиотикотерапии, проводится замена препарата на более мощный антибиотик или пересматривается вопрос причины развития заболевания.
  • Слишком длительная антибиотикотерапия может привести к развитию дисбактериоза – гибель бактерий, которые составляют основу нормальной микрофлоры, с увеличением количества условно-патогенных бактерий и грибков.

Преждевременное прекращение антибиотикотерапии в большинстве случаев приводит к развитию хронического инфекционного процесса, который тяжело поддается лечению даже с применением мощных современных препаратов.

Правильное применение антибиотиков позволяет эффективно бороться с инфекционными заболеваниями, вызванными различными видами бактерий. Также это позволяет исключить хроническое течение инфекции, при котором становится сложно подобрать соответствующий эффективный препарат.

Социальные кнопки для Joomla

Полусинтетические антибиотики

После выяснения химической структуры большинства антибиотиков были предприняты попытки осуществить химический синтез антибиотиков. Успешным оказался синтез левомицетина, и в настоящее, время его готовят исключительно химическим путем. Хотя синтез некоторых других антибиотиков оказался возможным (пенициллин, грамицидин и др.

Вначале антибиотики применялись в том виде, в каком они были синтезированы микроорганизмами. Однако по мере развития химии А. были разработаны методы улучшения свойств природных антибиотиков путем частичного изменения их химической структуры. Таким путем были получены так называемые полусинтетические антибиотики, в которых сохраняется основное ядро исходной молекулы нативного антибиотика, но некоторые радикалы молекулы заменены на другие или удалены.

Особенно большие успехи были достигнуты в получении полусинтетических пенициллинов (см. Пенициллины, полусинтетические). Показано, что ядром молекулы пенициллина является 6-аминопенициллановая кислота (6-АПК), обладающая слабой антибактериальной активностью. При присоединении к молекуле 6-АПК бензильной группы получают бензилпенициллин, который в настоящее время вырабатывается на заводах медицинской промышленности и широко применяется в мед.

https://www.youtube.com/watch?v=upload

практике под названием пенициллин. Бензилпенициллин обладает значительно более высокой антибактериальной активностью, чем 6-АПК. Однако бензилпенициллин наряду с очень мощной химиотерапевтической активностью и малой токсичностью обладает также некоторыми недостатками: он активен в основном лишь в отношении грамположительных микробов, легко разрушается под воздействием фермента пенициллиназы, образуемой некоторыми микроорганизмами, которые благодаря этому устойчивы к его действию.

Особенно часто среди патогенных бактерий продуцентами пенициллиназы являются стафилококки. Большинство стафилококков, устойчивых к пенициллину, выделенных в клинике, образует пенициллиназу. Кроме того, бензил-пенициллин быстро теряет свою активность в кислой и щелочной средах и благодаря этому разрушается в желудочно-кишечном тракте. От молекулы бензилпенициллина можно отделить бензильный остаток и заменить его остатком молекулы другого органического соединения.

Таким образом были получены сотни различных полусинтетических пенициллинов (производных 6-АПК). Большинство из них представляет меньший интерес, чем исходный бензилпенициллин. Но некоторые из полученных полусинтетических пенициллинов оказались устойчивыми к действию пенициллиназы, например метициллин, который эффективен и при лечении инфекций, вызванных устойчивыми к бензилпенициллину стафилококками.

Другие полусинтетические Пенициллины, устойчивые к пенициллиназе, оказались стойкими при кислой реакции среды (оксациллин). Препараты этого типа могут назначаться внутрь. Существуют полусинтетические Пенициллины со значительно более широким спектром антибактериального действия, чем исходный бензил-пенициллин, которые задерживают рост многих грамотрицательных микробов (ампициллин).

Среди тетрациклиновых антибиотиков были получены производные, выделяющиеся из организма значительно медленнее, и поэтому их лечебные дозировки в 5 -10 раз меньше, чем дозировки исходных природных тетрациклинов. Из антибиотиков рифомицина SV было получено производное рифампицин — эффективный противотуберкулезный препарат, который к тому же значительно более активен в отношении грамотрицательных бактерий, чем исходный рифомицин SV. Были получены новые полусинтетические производные линкомицина, левомицетина и т. д.

Механизм действия антибиотиков

По характеру действия антибиотики на бактерии их можно разделить на две группы: антибиотики бактериостатической действия и антибиотики бактерицидного действия. Бактериостатически антибиотики в концентрациях, которые можно создать в организме, задерживают рост микробов, но не убивают их, тогда как воздействие бактерицидных антибиотиков в аналогичных концентрациях приводит к гибели клетки.

За последние годы большие успехи были достигнуты в изучении механизма действия антибиотиков на молекулярном уровне. Пенициллин, ристомицин (ристоцетин), ванкомицин, новобиоцин, D-циклосерин нарушают синтез клеточной стенки бактерий, то есть эти антибиотики действуют лишь на развивающиеся бактерии и практически неактивны в отношении покоящихся микробов.

Конечным результатом действия этих антибиотиков является угнетение синтеза муреина, который наряду с тейхоевыми кислотами является одним из основных полимерных компонентов клеточной стенки бактериальной клетки. Под воздействием этих антибиотиков вновь образующиеся клетки, лишенные клеточной стенки, разрушаются.

Если осмотическое давление окружающей жидкости повысить, например, внесением в среду сахарозы, то лишенные клеточных стенок бактерии не лизируются, а превращаются в сферопласты или протопласты (см. Протопласты бактериальные), которые в соответствующих условиях способны размножаться подобно L-формам бактерий (см.).

После удаления антибиотиков микробная клетка, если она не погибла, вновь становится способной образовывать клеточную стенку и превращается в нормальную бактериальную клетку. Между этими антибиотиками не существует перекрестной устойчивости, потому что точки приложения их в процессе биосинтеза муреина различны.

Механизм действия других антибактериальных антибиотиков — левомицетина, макролидов, тетрациклинов — заключается в нарушении синтеза белка бактериальной клетки на уровне рибосом. Как и антибиотиков, подавляющие образование муреина, антибиотики, угнетающие синтез белка, действуют на различных этапах этого процесса и поэтому не имеют перекрестной устойчивости между собой.

Механизм действия антибиотиков аминогликозидов, например, стрептомицинов, заключается в первую очередь в подавлении синтеза белка в микробной клетке за счет воздействия на 30 S-ри-босомальную субъединицу (см. Рибосомы), а также нарушения считывания генетического кода в процессе трансляции (см.).

Противогрибковые антибиотики полиены нарушают целостность цитоплазматической мембраны у грибковой клетки, в результате чего эта мембрана теряет свойства барьера между содержимым клетки и внешней средой, обеспечивающего избирательную проницаемость. В отличие от пенициллина, полиены активны и в отношении покоящихся клеток грибков.

https://www.youtube.com/watch?v=ytaboutru

Противоопухолевые антибиотики, в отличие от антибактериальных, нарушают синтез нуклеиновых кислот в бактериальных и животных клетках. Антибиотики актиномицины и производные ауреоловой кислоты подавляют синтез ДНК-зависимой РНК, связываясь с ДНК, служащей матрицей для синтеза РНК. Антибиотик митамицин С оказывает алкилирующее действие на ДНК, образуя прочные ковалентные поперечные связи между двумя комплементарными спиралями ДНК, нарушая при этом ее репликацию (см.).

Антибиотик брунеомицин приводит к резкому угнетению синтеза ДНК и ее разрушению. Подавляющее действие на синтез ДНК оказывает и рубомицин. Все эти реакции являются, вероятно, первичными и основными в действии антибиотиков на клетку, так как они наблюдаются уже при очень слабых концентрациях препаратов.

Получение антибиотиков

определение оптимальных источников азота и углерода для образования антибиотиков является необходимым. Одним из важнейших условий успешного производства антибиотиков является продуктивность штамма продуцента. Штаммы продуцентов, выделенные из окружающей среды, обычно из почвы, как правило, малопродуктивны.

Путем их селекции удается получить штаммы продуцентов в десятки и сотни раз более продуктивные, чем исходный «дикий» штамм. Продолжительность выращивания продуцента колеблется от 48 часов до нескольких дней. Большинство антибиотиков, представляющих интерес для медицины, накапливается в культуральной жидкости.

Существуют два основных метода выделения антибиотика. Первый метод заключается в экстракции антибиотика из культуральной жидкости органическими растворителями, второй — основан на способности антибиотика адсорбироваться на ионообменных смолах. Для очистки препарата используют, в зависимости от природы антибиотика, различные физико-химические методы.

Очищенные препараты антибиотики для парентерального применения обычно выпускают в виде стерильно расфасованного во флаконы сухого порошка, хорошо растворимого в воде, изотоническом растворе хлорида натрия или растворах новокаина. За последние годы стойкие антибиотики выпускаются в виде готовых к употреблению стерильных растворов во флаконах.

Для приема внутрь антибиотики выпускают в виде таблеток или в желатиновых капсулах. Многие антибиотики (тетрациклины, неомицин, эритромицин, грамицидин С, гелиомицин и др.) используются для приготовления мазей. Для детской практики существуют специальные лекарственные формы: суспензия тетрациклина, стеарат левомицетина, лишенные горького вкуса, и т. д.

Проверка на биологическую активность большинства антибиотиков проводится микробиологическими методами (см. Антагонизм микробов). Для многих антибиотиков в качестве тест-микробов используются почвенные бациллы (Bacillus subtilis, Bacillus mycoides) и др. Активность пенициллина определяют в отношении золотистого стафилококка (штамм 209).

Для определения активности, некоторых антибиотиков применяются и химические методы. Для пенициллина используется йодометрический метод, для определения активности гризеофульвина — спектрофотометрический метод.

За международную единицу активности (ЕД) большинства антибиотиков принимают специфическую активность, содержащуюся в 1 мкг чистого препарата антибиотика. Для пенициллина международная единица (ЕД) активности равняется 0,6 мкг. Это количество соответствует минимальному количеству пенициллина, задерживающему рост стандартного штамма стафилококка в 50 мл питательной среды.

https://www.youtube.com/watch?v=channelUC0yXm2gMy_ZoLfF5Tgu5ccA

За единицу активности антибиотиков, которые еще окончательно не очищены, принимают минимальное количество наиболее чистого препарата, задерживающего рост тест-микроба в 1 мл питательной среды. Концентрация сухих препаратов антибиотиков выражается в количестве единиц активного вещества в 1 мг препарата.

Устойчивость бактерий к антибиотикам

Широкое внедрение антибиотиков в практическую медицину и ветеринарию привело к распространению бактерий, устойчивых к действию антибиотиков. Такие бактерии можно разделить на две группы: 1) устойчивые к одному антибиотику и 2) устойчивые одновременно к нескольким антибиотикам (множественная резистентность).

Бактерии первой группы могут быть устойчивыми и к нескольким антибиотикам, если последние характеризуются близким хим. строением и однозначным механизмом действия на бактериальную клетку (перекрестная устойчивость). Например, бактерии, устойчивые к действию рифамицина, одновременно устойчивы к стрептоварицину за счет единого для этих препаратов механизма действия, связанного с нарушением функции РНК-полимеразы.

Генетический контроль уровня чувствительности к антибиотикам определяется генами, локализованными в бактериальных хромосомах или в трансмиссибельных плазмидах (см.). Последние обеспечивают множественную резистентность клетки к нескольким антибиотикам. (см. R-фактор).

Бактерия, резистентная к данному антибиотику, представляет собой мутант по соответствующему хромосомному гену, который контролирует структуру компонентов клетки, являющихся объектом действия антибиотиков. Мутации по хромосомным генам, приводящие к антибиотикорезистентности, возникают с низкой частотой, колеблясь от 10-6 до 10-12.

Молекулярный механизм, лежащий в основе резистентности мутантной бактерии, для разных антибиотиков различен и определяется повреждением структур клетки, взаимодействующих с данным антибиотиками. Исследования Горини, Катайи, Трауба и Номуры (L. Gorini, E. Kataja, 1964; P. Traub, М. Nomura, 1968) показали, что стрептомицин инактивирует 30 S-субъединицу рибосомы за счет взаимодействия с 10-м белком, входящим в ее структуру, в результате чего нарушается трансляция генетической информации и искажается синтез полипептидной цепи.

Мутация по гену str А приводит к изменению структуры 10-го белка, в результате чего последний теряет способность взаимодействовать с антибиотиками. Из работ Хайля и Циллига (A. Heil, W. Zillig, 1970) известен другой пример антибиотикорезистентности, который также связан с мутационным изменением клеточного субстрата, являющегося объектом действия антибиотиков.

Бактерии, резистентные к рифамицину — антибиотику, инактивирующему РНК-полимеразу, содержат фермент, нечувствительный к этому антибиотику за счет измеленной субъединицы фермента, в результате чего не образуется комплекс молекулы РНК-полимеразы с рифамицином. Другим механизмом, обеспечивающим резистентность бактерий к антибиотикам, является нарушение процесса проникновения его в клетку и накопления в ней.

Грамнегативные бактерии резистентны к действию актиномицина из-за его неспособности проникать через клеточную стенку. Обработка этих бактерий этилендиаминтетрауксусной кислотой (ЭДТА) повышает их чувствительность к антибиотикам. Получены бактериальные мутанты, устойчивые к ЭДТА и одновременно ставшие резистентными к актиномицину.

ампициллину, хлорамфениколу, канамицину, стрептомицину, спектиномицину, гентамицину и тетрациклину. Вероятно, резистентность бактерий, контролируемая плазмидами, не ограничена перечисленными антибиотиками, список которых постоянно увеличивается γιο мере открытия новых R-факторов и создания новых препаратов антибиотиков.

Резистентность, определяемая R-плазмидами, распространена среди бактерий, относящихся к разным родам и семействам: Shigella, Escherichia, Salmonella, Proleus, Pseudomonas, Staphylococcus. Молекулярные механизмы, обеспечивающие устойчивость бактерий, несущих R-фактор (R -клетки), к разным антибиотикам, различны.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

Устойчивость к пенициллину связана с синтезом пенициллиназы (ß-лактамазы), контролируемым одним из генов R-фактора. Этот фермент гидролизует ß-лактамное кольцо пенициллина. Саваи (Т. Sawai, 1970) и соавторы установили, что существует три типа пенициллиназ, отличающихся друг от друга по физико-химическим, ферментативным и иммунологическим свойствам.

Инактивация стрептомицина осуществляется в R -клетке первыми двумя из упомянутых ферментов и заключается в присоединении к 3-ОН-группе антибиотиков фосфата или АМФ, донором которых является АТФ. Существует прямая корреляция между резистентностью R -штаммов к канамицину и неомицину и присутствием в них третьего и четвертого из вышеперечисленных ферментов.

Таким образом, инактивация антибиотиков в R -штаммах, характеризующихся множественной резистентностью, осуществляется тремя типами реакций- фосфорилированием, ацетилированием и аденилированием. Изучение биохимических механизмов устойчивости бактерий к антибиотикам показало, что резистентность к отдельному антибиотику не всегда контролируется индивидуальным геном R-фактора.

Иными словами, бактерия может обладать резистентностью к большему числу антибиотиков, чем число генов, контролирующих эти признаки. Это связано с тем, что индивидуальный фермент, синтез к-рого детерминируется одним геном, способен инактивировать разные антибиотики. Некоторые из ферментов, инактивирующих антибиотики, синтезируемые под контролем R-фактора, локализованы в клетке в периплазматическом пространстве.

Расшифровка биохимических и генетических механизмов, обеспечивающих резистентность бактерий к антибиотикам, обосновывает рациональность клинического их использования, способы преодоления резистентности бактерий и направленность поиска новых лечебных препаратов. Преодоление множественной антибиотикорезистентности бактерий теоретически может быть достигнуто путем использования препаратов, избирательно блокирующих репликацию R-фактора (препараты акридинового ряда) или путем инактивации ферментов, модифицирующих антибиотики.

Одним из возможных подходов для борьбы с антибиотикорезистентностью, связанной с действием R-ферментов, является комбинированное применение препаратов, одни из которых защищают другие от инактивации. Например, гентамицин способен в низких концентрациях угнетать инактивацию других аминогликозидов. Из работ Умедзавы (H.

Библиография: Антибиотики, М., с 1956; Антибиотики, сборники переводов, М., 1948-1959; Антибиотики, под ред. П. Н. Кашкина и Η. П. Блинова, Л. 1970, библиогр.; Ваксман 3. А. Антагонизм микробов и антибиотические вещества, пер. с англ., М., 1947; Г а м а-л е я Η. Ф. Собрание сочинений, т. 2, с. 336, М.

, 1951, библиогр.; Г а у з е Г. Ф. Лекции по антибиотикам, М., 1958, библиогр.; ГровД. С. иРендаллВ. А. Руководство по лабораторным методам исследования антибиотиков, пер. с англ., М., 1958, библиогр.; Ермольева 3. В. Антибиотики, Интерферон, Бактериальные полисахариды, М., 1968, библиогр.; Клиническое применение антибиотиков, под ред. В. X.

Василенко и др., М., 1966; Кож ы беки Т., Ковшык-Гиндифер 3. и Курылович В. Антибиотики, происхождение, природа и свойства, пер. с польск., т. 1-2, Варшава, 1969; Красильников H.A. Антагонизм микробов и антибиотические вещества, М., 1958, библиогр.; Краткое руководство по антибиотикотерапии, под ред. И. Г. Руфанова, М.

, 1964, библиогр.; Механизм действия антибиотиков, пер. с англ., под ред. Г. Ф. Гаузе, М., 1969, библиогр.; Н а-в а ш и н С. М. и ФоминаИ.П. Справочник по антибиотикам, М., 1974, библиогр.; Планельес X. и Харитонова А. Побочные явления при антибиотикотерапии бактериальных инфекций, М., 1965, библиогр.;

Противоопухолевые антибиотики, под ред. М. М. Маевского, М., 1962, библиогр.; Сазы кин Ю. О. Антибиотики как ингибиторы биохимических процессов, М., 1968, библиогр.; Токин Б. П. Фитонциды, Очерки об антисептиках растительного происхождения, М., 1948; Шемякин М. М. и др. Химия антибиотиков, т. 1-2, М.

ТАБЛИЦЫ (приложения к статье «Антибиотики»)

Основное назначение приводимых ниже таблиц — содействовать более рациональному лечебному использованию антибиотиков. Материалы таблиц носят ориентировочный характер, и поэтому в конкретных клинических обстоятельствах допустимы известные отклонения от табличных рекомендаций. В таблицы включены те виды возбудителей инфекционных заболеваний и гнойно-воспалительных процессов, чувствительность которых к большинству антибиотиков изучена в достаточной мере.

Таблица 1 характеризует чувствительность in vitro отдельных видов возбудителей инфекционных заболеваний к различным антибиотикам. На основании материалов таблицы можно выделить ряд антибиотиков, применение каждого из которых против данного вида возбудителя представляется теоретически оправданным.

Таблица 2 содержит рекомендации об очередности использования антибиотиков в лечении бактериальных гнойно-воспалительных процессов. В отсутствие клинических и бактериологических данных о чувствительности (резистентности) возбудителя к антибиотикам может быть рекомендован антибиотик первой очереди. При слабом эффекте или его отсутствии может быть применен один из резервных препаратов.

Таблица 3 позволяет установить (ориентировочно) оптимальную дозу концентрации препарата, подавляющую рост данного возбудителя инфекционного заболевания.

В таблице 4 представлены разовые дозы и способы введения антибиотиков, обеспечивающие эффективный уровень их концентрации в крови.

Таким образом, произведя выбор антибиотика (с использованием данных из таблиц 1 и 2) и наметив — с помощью таблиц 3 и 4, а также с учетом конкретных клинических данных — оптимальную для больного величину разовой дозы антибиотика, проверяют по таблице 5. не превышает ли эта величина пределы, допустимые для данного антибиотика.

Более детальные сведения об особенностях применения различных антибиотиков при лечении заболеваний, вызванных отдельными возбудителями, приводятся в соответствующих статьях.

ЧУВСТВИТЕЛЬНОСТЬ НЕКОТОРЫХ МИКРООРГАНИЗМОВ К АНТИБИОТИКАМ

Микроорганизмы

Наименование антибиотика

бензилпенициллин

метициллин

оксациллин

ампициллин

цефалоридин

эритромицин

олеандомицин

новобиоцин

линкомицин

ристомицин

рифампицин

стрептомицин

мономицин

канамицин

гентамицин

тетрациклины

левомицетин

Actinomyces israelii

Bacillus anthracis

±

±

±

Brucella melitensis

 

Candida albicans

Устойчивы ко всем антибактериальным антибиотикам,
чувствительны к нистатину, леворину, амфоглюкамину

Clostridium histolyticum

±

Clostridium oedematiens

±

Clostridium perfringens

±

Corynebacterium diphtheriae

Diplococcus pneumoniae

Escherichia coli

Klebsiella pneumoniae

Leptospira icterohaemorrhagiae

Mycobacterium tuberculosis

Neisseria gonorrhoeae

Neisseria meningitidis

Pasteurella pestis

Pasteurelia tularensis

Proteus vulgaris

±

Pseudomonas aeruginosa

Rickettsia prowazekii

Salmonella enteritidis

±

Salmonella paratyphi A

±

Salmonella paratyphi В

Salmonella typhimurium

— *

Shigella flexneri

Staphylococcus aureus

Streptococcus faecalis

±

±

±

Streptococcus pyogenes

Streptococcus viridans

Treponema pallidum

Нет данных

Нет данных

Vibrio cholerae

Vibrio comma

https://www.youtube.com/watch?v=ytcopyrightru

Условные обозначения: высокочувствительны; чувствительны; малочувствительны; ± чувствительны непостоянно; — устойчивы.

* — Некоторые штаммы чувствительны к высоким концентрациям препарата.

ОЧЕРЕДНОСТЬ ПРИМЕНЕНИЯ АНТИБИОТИКОВ ПРИ ГНОЙНЫХ И ВОСПАЛИТЕЛЬНЫХ ПРОЦЕССАХ, ВЫЗВАННЫХ БАКТЕРИЯМИ

Бактерии

Антибиотики

первой очереди

резервные

Diplococcus pneumoniae

Бензилпенициллин

Цефалоспорины, эритромицин, тетрациклины

Escherichia coli и Klebsiella pneumoniae

Ампициллин, цефалоспорины, тетрациклины с сульфаниламидами

Канамицин, гентамицин, полимиксины в сочетании с
налидиксовой кислотой и фурагином

Proteus mirabilis

То же

Канамицин, гентамицин. карбенициллин в сочетании с
препаратами оксихинолина

Pseudomonas aeruginosa

Карбенициллин

Гентамицин, полимиксины

Staphylococcus aureus

Метициллин, оксациллин

Цефалоспорины, эритромицин, олеандомицин, ристомицин,
линкомицин, новобиоцин

Streptococcus faecalis

Ампициллин

Бензилпенициллин в сочетании со стрептомицином, ристомицин

Streptococcus pyogenes

Бензилпенициллин

Цефалоспорины, эритромицин

Streptococcus viridans

Бензилпенициллин

Бензилпенициллин в сочетании со стрептомицином, ристомицин

ДИАПАЗОН МИНИМАЛЬНЫХ КОНЦЕНТРАЦИЙ АНТИБИОТИКОВ (in vitro), ПОДАВЛЯЮЩИХ ВОЗБУДИТЕЛЕЙ ИНФЕКЦИЙ (мкг/мл) (По данным С. М. Навашина и И. П. Фоминой, 1974; A. М. Walter, L. Heimeyer, 1965)

Наименование возбудителя

Наименование антибиотика

бензилпенициллин

метициллин

оксациллин

ампициллин

цефалоридин

эритромицин

олеандомицин

новобиоцин

линкомицин

ристомицин

рифампицин

стрептомицин

мономицин

канамицин

гентамицин

тетрациклины

левомицетин

Actinomyces israelii

0,01 — 1,5

0,085-0,85

0,2-10,0

0,1-0,75

0, 3-0,5

1,0-4,0

1 ,0-4,0

1, 5-2 , 5

0,5-3,5-75,0

0,1-5,0

0, 5-7,5

0,5-10,0

Bacillus anthracis

0,018-1,5

1,0

0,25-0, 5-10,0

0,3-1 ,0

0,5-5,0

0,75-5,0

0,25-8,0

4,5-5,5

0,6-12,5

0,5-3, 5

0,5-7,5

0,5-17,5

Brucella melitensis

0,15-6,0

Устойчивы

0,5-20,0

0,5-100,0 *

2,0-50,0

10,0100,0*

0,5-10,0

3,0

2, 5-5,0

0,05-2,0

0,25-10,0

Candida albicans

Устойчивы ко всем антибиотикам

Clostridium histolyticum

0,018-6,0

0,025

0,25

0,05-1 ,0-200,0 *

0, 1-5,0

1 ,0-20,0

10,0-50,0

0,36-1,4-

25,0

0,1-2,0

1,0-40,0-200 ,0 *

15,0-100,0

50,0-200,0*

0,1-5,0- 100,0*

1,0-50,0

Clostridium oedematiens

0,018-6,0

0,025

0,25

0,05-1 ,0-200,0 *

0, 1 — 5,0

1 ,0-20,0

10,0-50,0

0,36-1,4-

25,0

0,1-2,0

1 ,0-40,0-200,0 *

15,0-100,0

50.0    —

200.0    *

0.1-5,0-100,0 *

1,0-50,0

Clostridium perfringens

0,018-6,0

0,025

0,25

0,05-1.0-

200 , 0*

0, 1-5,0

1 ,0-20,0

10,0-50,0

0,36-1,4-

25,0

0,1-2,0

1 ,0-40,0-200,0 *

15,0-100,0

50,0-

200,0*

0,1-5,0-100,0 *

1,0-50,0

Corynebacterium diphtheriae

0,036-3,0

0,04-2,0

0,025-3,0

0,025-2,0

0,1-5,0

2,0-15,0

0,5-2,0

0,005

0,5-25,0

0,5-2, 5

0,5-7,5

0,5-10,0

0,5-10,0

Diplococcus pneumoniae

0,006-0,06

0,02-0,2

0,02-0, 1

0,01-0,15

0,01-25,0

0,025-0,3

0,1-3,0

0,2-12,5

0,06-1,5

0,1-5,0

0,005

2,0-50,0

100,0

7,5-50,0

3,1-25,0

0,05-5,0

0,25-12,5

Escherichia coli

15 , 0-60 , 0 *

3,1 — 12,0

1,6-8,0; 100,0*

10,0- 100,0*

Устойчивы

Устойчивы

Устойчивы

Устойчивы

25,0-100,0

0,5-100,0

3,0-16,0

4,0-40,0

0,02-50,0

0,5-10,0- 100,0*

0,5-15,0-200,0 *

Klebsiella pneumoniae

Устойчивы

1 ,25

1 ,0-50,0

Устойчивы

Устойчивы

Устойчивы

Устойчивы

Устойчивы

25,0-250,0 *

0,5-50,0

1,5-6,0

1,0-50,0

0,1-50,0

0,5-30,0

1,5-50,0

Leptospira icterohaemorrhagiae

0,2-10,0

0, 1-5,0

2,0-10,0*

0,1 — 10,0

100,0 *

Mycobacterium tuberculosis

5,0-100,0

1 ,0-25,0 *

Устойчивы

Устойчивы

Устойчивы

Устойчивы

2,0-5,0

0,02-5,0

0,5-10,0

0,1-0,5-5,0

0,5-17,5

0,15

1,0-100,0*

1,0-17,5

Neisseria gonorrhoeae

0,0006-0,6

0,1-12,5

0,1-12,5

0,01-0,6

0,25-25 ,0

0,025 -1,0

0, 3-5,0

0,5-10,0

32.0

Устойчивы

2,0-50,0

10,0-25,0

2,5-12,5

0,8-1,6

0,05-3,0

0,5-3,0

Neisseria meningitidis

0,018-0,3

0, 12-3,1

0,12-3, 1

0,02-0,25

0, 1-3,1

0,05-5,0

0,4-5,0

0,1-4,0

32 .0 *

Устойчивы

1,0-30,0

2,5-12,5

6,3-25,0

0,1-5,0

0,5-10,0

Pasteurella pestis

3,0-100,0 *

0,05-1,0

Устойчивы

Устойчивы

Устойчивы

0, 5-2,0

0,8-3,1

0,3-10,0

Pasteurelia tularensis

Устойчивы

0,05-25,0

Устойчивы

Устойчивы

Устойчивы

0,15-0,4

0,8-3,1

1,0-10,0

0,5-10,0

Proteus vulgaris

1,5-60,0 *

— ’

1,56-3,1 -100,0 *

0, 2-6.2-100,0 *

10,0- 100,0*

Устойчивы

1,0-100,0 *

Устойчивы

Устойчивы

10,0-75,0

2,0-200,0 *

3,0-25,0

2,5-50,0-

200,0

0,04-50,0

10,0-100,0 *

2,5-50.0-200,0 *

Pseudomonas aeruginosa

Устойчивы

Устойчивы

Устойчивы

Устойчивы

20,0; 100,0*

Устойчивы

Устойчивы

25,0-

250,0

0,5-200,0 *

25,0-100,0*

15,0-

200,0

0,00-8,0;100 *

3,0-100,0 *

10.0- 200,0*

Rickettsia prowazekii

Устойчивы

_

Salmonella enteritidis

2,0-60,0 *

0,7-8,0

1,0-25 ,0;100,0 *

Устойчивы

Устойчивы

Устойчивы

Устойчивы

Устойчивы

60,0-120,0

0 , 5-50 , 0

10,0-20 ,0

1,0-30,0

1,2-8,0

1, 0-30 , 0

0,5-30,0

Salmonella paratyphi A

2,0-60,0 *

0,6

1 ,0-25,0; 100,0 *

Устойчивы

Устойчивы

Устойчивы

Устойчивы

Устойчивы

60,0-120,0

0,5-50,0

10,0-20,0

1,0-30,0

1,2-8,0

1,0-30,0

0,5-30,0

Salmonella paratyphi В

2,0-60,0 *

1,25

1,0-25,0;100,0 *

Устойчивы

Устойчивы

Устойчивы

Устойчивы

Устойчивы

60,0-120,0

0,5-50,0

10,0-20,0

1,0-30,0

1,2-8,0

1,0-30,0

0,5-30,0

Salmonella typhimurium

1,5-30,0

0,4-1,5

1,0-8,0

Устойчивы

Устойчивы

Устойчивы

Устойчивы

Устойчивы

12′, 0-250,0

0,5-5,0

5,0

0,5-10,0

1,2-2,4

0,5-10,0

0,25-12,5

Shigella flexneri

Устойчивы

0, 6-8,0

1,0-50,0

Устойчивы

Устойчивы

Устойчивы

Устойчивы

Устойчивы

25,0-62,0

0,5-50,0

5,0-10,0

1,5-25,0

3,0-4, 5

0,5-20,0- 100,0*

1,0-30,0

Staphylococcus aureus

0,003-60,0*

0,2-6, 2

0, 1-0,6

0,06 -100,0 *

0 , 04-64 , 0

0,1-2,0-100,0 *

0, 3-2.0-100,0 *

0,1-3,0-100,0 *

0,4-2,8,100,0 *

1,5-7, 5

0,0045-

0,6

0,5-

200,0

0,8-10,0;100,0 *

0,5-10,0-

30,0

0,8-2,0; 40 ,0 *

0,1-3,0- 100,0*

0, 5-7,0-100,0 *

Streptococcus faecalis

0,15-6,0

5,0-100,0

6,2-50,0

0,4-6,0

0,04-3, 1 -100,0 *

0,1-5,0

0,5-10,0

0,75-100,0*

4,0-46,0;100,0 *

0,1-20,0

0,05-0,8;100,0 *

2,0-

200,0

15,0-200,0 *

6,2-10,0;100,0 *

0.1 -100,0 *

0,5-30,0

Streptococcus pyogenes

0,003-0,15

0,01-0,4

0,01-0,4

0,02

0,01 — 1,5

0,05-1,5

0,1-3,0

0,1-20,0-100,0 *

0,04-2,0

0,1-10,0

0,025-

0,04

2,0-200,0 *

25,0

10,0-100,0

2,4-25,0

0,05-5,0

0,5-15,0

Streptococcus viridans

0,003-30,0

0,5-3, 1

0,5-3, 1

0,06-1,6

0,01-3,1

0,05-3,0

0,3-3,0

0.3-5,0

0,1-5,0 *

0,1-20,0

0,5-25,0

15,0-200,0 *

6,3-12,5

0,05-3,0

0,5-15,0

Treponema pallidum

0,006-0,03

_

_

_

_

_

_

_

_

_

Vibrio cholerae

Устойчивы

5,0

Устойчивы

Устойчивы

0,5-10,0 *

2,5-10,0 *

2,0-10,0*

50,0*

50,0 *

0,2-20,0-

100,0

0,8-12,5

1,6-12,5

0,5-50,0

0,01-25,0

Vibrio comma

Устойчивы

Устойчивы

Устойчивы

Устойчивы

0,5-10,0 *

2,5-10,0 *

2,0-10,0*

50,0 *

50,0 *

0,2-20,0-

100,0

0,8-12,5

1,6-12,5

0,5-50,0

0,01-25,0

* и более.

Примечание. Второй интервал минимальных подавляющих
концентраций антибиотиков приводится для устойчивых штаммов возбудителей
заболеваний; — означает отсутствие данных.

ОПРЕДЕЛЕНИЕ ДОЗЫ И СПОСОБА ВВЕДЕНИЯ АНТИБИОТИКА, ОБЕСПЕЧИВАЮЩЕГО НЕОБХОДИМЫЙ (см. табл. 3) УРОВЕНЬ ЕГО КОНЦЕНТРАЦИИ В СЫВОРОТКЕ КРОВИ

Группа и наименование антибиотика

Способ

введения

Доза

Концентрация антибиотика в сыворотке
крови (мкг/мл) через 4—6 часов после введения *1

0,03

0,06

0,3

0,5

1,0

2,0

3,0

4,0

8,0

16,0

18,0

выше 18,0

Пенициллины и цефалоспорины *2

Бензилпенициллина калиевая и натриевая соли

Внутривенно или внутримышечно

100—400 тыс. ЕД

4—5 млн. ЕД

10 млн. ЕД

20 млн. ЕД

Ампициллин

Внутрь

0,25 г

Внутрь

0,5 г

Внутрь

1 г

Оксациллин

Внутрь

0,25 г

Внутрь

0,5 г

Внутрь

1 г

Метициллин

Внутримышечно

0,5 г

Внутримышечно

1 г

.

Цефалоридин (цепорин)

Внутримышечно

0,25 г

0,5 г

Антибиотики, действующие преимущественно на
грамположительные формы микробов

Эритромицин

Внутрь

0,25 г

Внутрь

0,5 г

Внутривенно

0,25 г

Внутримышечно

1 г

Внутримышечно

0,2 г

Олеандомицин

Внутрь

0,25 г

Внутрь

0,5 г

Внутривенно

0,25 г

Внутривенно

0,5 г

Линкомицин

Внутрь

0,5 г

Внутрь

1 г

Внутримышечно

0,3 г

Внутримышечно

0,6 г

Внутривенно

0,3 г

Внутривенно

0,6 г

Новобиоцин

Внутрь

0,25 г

Внутрь

0,5 г

Внутривенно

0,5 г

Внутривенно

1 г

До 55 мкг/мл

Ристомицин

Внутривенно

0,5 г

Внутривенно

1 г

До 20 мкг/мл

Антибиот и к и — аминогликозиды *3

Стрептомицин

Внутримышечно

0,25 г

Внутримышечно

0,5 г

Внутримышечно

1 г

До 2 5 мкг/мл

Мономицин

Внутримышечно

250 тыс. ЕД

Внутримышечно

500 тыс. ЕД

Канамицин

Внутримышечно

250 тыс. ЕД

_L

Внутримышечно

500 тыс. ЕД

До 24 мкг/мл

Внутримышечно

1 г

До 3 0 мкг/мл и выше

Гентамицин

Внутримышечно

0,03 г

Внутримышечно

0,06 г

Внутримышечно

0, 12 г

Тетрациклины

Тетрациклин,

окситетрациклин,

хлортетрациклин

Внутрь

0,25 г

Внутрь

0,5 г

Внутримышечно

0, 1 г

Внутримышечно

0,25 г

Морфоциклин *4 Рондомицин

Внутривенно

150 мг

Внутрь

0,15 г

Внутрь

0,3 г

До 6 мкг/мл

Левомицетины

Левомицетин

Внутрь

0,5 г

1

1

1

Внутрь

1 г

До 9 мкг/мл

Левомицетина

сукцинат

Внутривенно

0,5 г

1

Внутривенно

1 г

До 9 мкг/мл

Внутримышечно

0,5 г

Внутримышечно

1 г

До 9 мкг/мл 1

Дополнительные материалы

АНТИБИОТИКИ — химиотерапевтические вещества, образуемые микроорганизмами или получаемые из тканей растений и животных, а также их синтетические аналоги и производные, обладающие способностью избирательно подавлять в организме больного жизнеспособность возбудителей заболеваний (бактерии, грибки, вирусы, простейшие) или задерживать развитие злокачественных новообразований.

Подавляющее большинство антибиотиков, имеющих практическое значение, получают в промышленном масштабе путем биосинтеза их актиномицетами, низшими грибками (пенициллы, цефалоспориумы и др.) или некоторыми бактериями. Описано более 2000 антибиотиков, у 200 из них изучен механизм действия, применение в медицине нашли около 50 антибиотиков, отвечающих критериям эффективности и безвредности.

Антибиотики применяют также в ветеринарии, для стимуляции роста сельско-хозяйственных животных и птиц, в пищевой промышленности. Антибиотики принадлежат к самым различным классам химических соединений (аминосахара, антрахиноны, бензохиноны, гликозиды, лактоны, Макролиды, феназины, пиперазины, пиридины, хиноны, терпеноиды, тетрациклины, триазины и др.).

Наиболее широко применяются бета-лактамиды (Пенициллины и цефалоспорины), Макролиды (эритромицин, олеандомицин и др.), ансамакролиды (рифамицины), аминогликозиды (стрептомицин, канамицин, гентамицин, тобрамицин, сизомицин и др.), тетрациклины, полипептиды (бацитрацин, полимиксины и др.), полиены (нистатин, амфотерицин В и др.), стероиды (фузидин), антрациклины (даунорубицин и др.).

кислото- и энзимо устойчивостью, расширенным спектром антимикробного действия, улучшенным распределением в тканях и жидкостях организма, измененным механизмом действия на микробные и опухолевые клетки, меньшим числом побочных эффектов. Наилучшие результаты достигнуты при получении и применении полусинтетических пенициллинов (см.

), цефалоспоринов (см.), аминогликозидов, тетрациклинов (см.), рифамицинов (см.), которые являются основными представителями так называемых антибиотиков второго поколения, пришедших на смену традиционным природным антибиотикам. Некоторые природные антибиотики, особенно бензилпенициллин, используются главным образом для получения полусинтетических производных. Отдельные антибиотики применяются лишь в виде продуктов химической трансформации (цефалоспорины, Рифамицины и др.).

1) активные в отношении грамположительных микроорганизмов, особенно стафилококков: бензилпенициллин, полусинтетические Пенициллины и цефалоспорины, Макролиды, фузидин, линкомицин;

2) широкого спектра действия (активные в отношении грамположительных и грамотрицательных микроорганизмов): тетрациклины, хлорамфеникол (левомицетин), аминогликозиды , полусинтетические Пенициллины и цефалоспорины;

3) противотуберкулезные антибиотики: стрептомицин, канамицин, биомицин (флоримицин), циклосерин и др.;

4) противогрибковые антибиотики: нистатин, леворин, амфотерицин Б, гризеофульвин и др.;

https://www.youtube.com/watch?v=ytpressru

5) активные в отношении простейших: фумагиллин, трихомицин, паромомицин (мономицин);

6) противоопухолевые антибиотики: актиномицины, группа ауреоловой кислоты, антрациклины.

Хотя для ряда антибиотиков в эксперименте была доказана возможность противовирусного действия (дистамицин антибиотик, производные рифамицина и др.), они не нашли пока применения для лечения заболеваний вирусной этиологии. Некоторые антибиотики обладают антигельминтным действием и применяются для лечения глистных инвазий у сельско-хозяйственных животных, например, гигромицин В.

Антимикробные антибиотики применяются в животноводстве и птицеводстве как стимуляторы роста, а также в пищевой промышленности при консервировании продуктов. Однако применение для этой цели антибиотиков, широко используемых в медицине, может привести к серьезным последствиям, прежде всего распространению возбудителей с множественной устойчивостью к антибиотикам внехромосомной (плазмидной) природы, которые могут являться причиной тяжелых болезней человека, а также аллергизации за счет остаточных количеств антибиотика в пищевых продуктах. Законодательством ряда стран запрещено или ограничено применение антибиотиков, используемых в медицине, в животноводстве и пищевой промышленности.

Некоторые антибиотики широко используются при биохимических, и молекулярно-биологических исследованиях как специфические ингибиторы определенных метаболических процессов клеток микро- и макроорганизмов.

1) ингибиторы синтеза клеточной стенки микроорганизмов: Пенициллины, цефалоспорины, циклосерин, ванкомицин, бацитрацин;

2) ингибиторы функции мембран и антибиотики, обладающие детергентным свойством: полимиксины, новобиоцин, полиены (нистатин, амфотерицин Б);

3) ингибиторы синтеза белка и функции рибосом: тетрациклины, хлорамфеникол (левомицетин), аминогликозиды, Макролиды, линкомицин;

4) ингибиторы метаболизма нуклеиновых кислот: а) ингибиторы РНК — актиномицины, антибиотики группы ауреловой кислоты, антрациклины, новобиоцин; б) ингибиторы ДНК — митомицин С, стрептонигрин (брунеомицин), новобиоцин, линкомицин.

Знание механизма действия антибиотиков на клеточном и молекулярном уровнях позволяет судить не только о направленности химиотерапевтического эффекта («мишень» антибиотика), но и о степени его специфичности. Так, например, бета-лактамиды (Пенициллины и цефалоспорины) воздействуют на опорный полимер (пептидогликан) клеточной стенки бактерий, отсутствующий у животных и человека.

Поэтому избирательность действия бета-лактамидов является их уникальным свойством, определяющим высокий химиотерапевтический индекс и низкий уровень токсичности, что позволяет вводить эти антибиотики в больших дозах без опасности развития побочных эффектов. Избирательность действия антибиотиков — ингибиторов белкового синтеза не столь выражена.

Поэтому при применении антибиотиков группы тетрациклинов, аминогликозидов и хлорамфеникола (левомицетина) в большом проценте случаев выявляются побочные эффекты. При сравнительном анализе свойств различных групп антибиотиков их оценивают по показателям эффективности и безвредности, определяемых выраженностью антимикробного действия в организме, скоростью развития устойчивости у микроорганизмов в процессе лечения, отсутствием перекрестной устойчивости с другими химиопрепаратами, степенью проникновения в очаги поражения, созданием терапевтических концентраций в тканях и жидкостях больного и продолжительностью их поддержания, сохранением действия в различных условиях среды.

Важными свойствами являются также стабильность при хранении, удобство применения при разных методах введения, выраженный разрыв между лечебными и токсическими дозами (высокий химиотерапевтический индекс), отсутствие или слабая выраженность органотропных (токсических) побочных явлений, а также аллергизации больного.

Такие критерии, как этиотропность антибиотиков, устанавливаемая на основании тестов в отношении выделенных возбудителей (изучение чувствительности для получения так наз. антибиограммы), и возможность достижения терапевтических концентраций в организме определяют эффект действия антибиотиков при данном заболевании.

Выбор антибиотиков осуществляется на основе комплекса клинических, и лабораторных тестов. При близком антибактериальном спектре назначается наименее токсичный антибиотик, реже вызывающий побочные реакции. Доза антибиотиков, путь и частота его введения определяются на основе сопоставления МП К (минимальная подавляющая рост микроорганизма концентрация антибиотика) для выделенного возбудителя и концентрации, достигаемой в организме при оптимальных дозах и путях введения.

Считают целесообразным, чтобы концентрация антибиотика в крови превышала значение его МПК для данного возбудителя. При тяжелых септических процессах, ослаблении защитных реакций больного следует назначать бактерицидные антибиотики; например, природные и полусинтетические Пенициллины и цефалоспорины* аминогликозиды, полимиксины и др.

При достаточных дозах данные антибиотики дают быстрый терапевтический эффект, уменьшается число рецидивов и предупреждается носительство возбудителей (эндокардиты, сепсис, пиелонефриты, остеомиелиты, туберкулез и др.). Бактерицидные антибиотики можно применять курсами с определенными перерывами. Бактериостатические антибиотики используют обычно при заболеваниях средней тяжести течения. При этом защитные механизмы больного завершают химиотерапевтическое действие антибиотика и освобождают организм от возбудителей.

Обязательным условием для этиотропной антибиотикотерапии является бактериологическая диагностика заболевания, выделение возбудителя и определение его чувствительности к антибиотикам.

Для контингентов больных, подвергающихся воздействию антибиотиков, характерно преобладание старших возрастных групп или, наоборот, детей раннего возраста, у которых резко изменены условия распределения антибиотиков в организме. Часто инфекционный процесс сопровождается другими заболеваниями (сердечно-сосудистые, заболевания почек, печени и т. д.

Важнейшим фактором, снижающим конечный результат антибиотикотерапии, является устойчивость (резистентность) микроорганизмов к антибиотикам. Устойчивость микроорганизмов к антибиотикам изучается с позиций генетики, молекулярной биологии, экологии и эпидемиологии. Устойчивость может определяться природными свойствами данного вида или рода микроорганизмов, хромосомной первичной или вторичной мутацией (медленное развитие устойчивости — многоступенчатая мутация, быстрое — одноступенчатая мутация).

Множественная устойчивость одновременно к ряду А. (полирезистентность) контролируется так наз. R-факторами (плазмидами), локализованными в цитоплазме бактериальной клетки (внехромосомная устойчивость). Такая форма описана для большинства бактерий — эшерихий, шигелл, сальмонелл, стафилококков и др. R-факторы (см.

https://www.youtube.com/watch?v=ytpolicyandsafetyru

трансформации (см.), трансдукции (см.) и конъюгации (см. Конъюгация у бактерий). Последний путь является наиболее частым и имеет основное значение для эпид, распространения множественно-устойчивых форм патогенных бактерий (шигеллы, сальмонеллы, кишечные палочки, холерные вибрионы и т. д.). Одновременно с детерминантами резистентности внехромосомные элементы могут осуществлять передачу других признаков, определяющих возбудителя (образование токсинов, гемолитическая способность и др.).

Оцените статью
Все про антибиотики
Adblock detector